

Published on Web 11/13/2009

New Synthetic Procedures to *Catena*-Phosphorus Cations: Preparation and Dissociation of the First *cyclo*-Phosphino-halophosphonium Salts

Jan J. Weigand,^{*,†} Neil Burford,^{*,‡} Reagan J. Davidson,^{†,‡} T. Stanley Cameron,[‡] and Patrick Seelheim[†]

Department of Inorganic and Analytical Chemistry, Westfälische Wilhelms-University Münster, Corrensstrasse 30, 48149 Münster, Germany, and Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada

Received September 10, 2009; E-mail: jweigand@uni-muenster.de; Neil.Burford@dal.ca

Abstract: Chlorination of 1,2,3,4-tetracyclohexyl-*cyclo*-tetraphosphine (**2**) by PhlCl₂ or PCl₅ in the presence of Me₃SiOTf or GaCl₃ provides a stepwise approach to salts of the first *cyclo*-phosphino-chlorophosphonium cations $[Cy_4P_4Cl]^+$ ([**19**]⁺) and $[Cy_4P_4Cl_2]^{2+}$ ([**20**]²⁺). The analogous iodo derivative $[Cy_4P_4I]^+$ ([**17**]⁺) is obtained as the tetraiodogallate salt from reaction of **2** with l₂ in the presence of Gal₃. Reactions of the dication [**20** $]^{2+}$ with PMe₃ or dmpe effect a dissociation of the cyclic framework resulting in the formation of salts containing $[Me_3PPCyPCyPMe_3]^{2+}$ ([**27**]²⁺), $[dmpeCyP]^{2+}$ ([**29**]²⁺), and $[dmpeCyPCyP]^{2+}$ ([**30**]²⁺), respectively. The new cations represent phosphine complexes of the $[PCy]^{2+}$ and $[P_2Cy_2]^{2+}$ cationic fragments from [**20** $]^{2+}$, demonstrating the coordinate nature of the phosphinophosphonium bonds in *cyclo*-phosphino-halophosphonium cations. The compounds have been characterized by NMR spectroscopy, single crystal X-ray crystallography, and Raman spectroscopy.

Introduction

Catena-phosphinophosphonium cations represent a potentially diverse new class of compounds that represent analogues of the homoatomic frameworks of carbon.¹ The presence of a molecular cationic charge enhances the P–P bond energy and provides for high yield preparative reactions. A variety of synthetic approaches have been described. Most obvious are the single or double alkylation of a polyphosphine.^{2–6} For example, diphosphines **1** are precursors to phosphinophosphonium cations **3**³ and diphosphonium cations **5**,² and *cyclo*-tetraphosphines **2** are precursors to *cyclo*-triphosphino-2-phosphonium cations **4**^{4,5} and cyclo-1,3-diphosphino-2,4-diphosphonium dications **6**⁶ (Scheme 1).

Halogenation reactions of polyphosphines offer a potentially versatile alternative approach to cationic electrophile addition recognizing that a phosphine **7** reacts with a dihalogen, X_2 , to give a P-X-X linear adduct **8**^{7,8} or a halophosphonium salt **9**^{9,10} (Scheme 2), depending on the basicity of the phosphine,^{7,8}

- (1) Dyker, C. A.; Burford, N. Chem. Asian J. 2008, 3, 28–36.
- (2) Weigand, J. J.; Riegel, S. D.; Burford, N.; Decken, A. J. Am. Chem.
- Soc. 2007, 129, 7965–7976.
 (3) Burford, N.; Dyker, C. A.; Decken, A. Angew. Chem., Int. Ed. 2005, 44, 2364–2367.
- (4) Burford, N.; Dyker, C. A.; Lumsden, M. D.; Decken, A. Angew. Chem., Int. Ed. 2005, 44, 6196–6199.
- (5) Dyker, C. A.; Riegel, S. D.; Burford, N.; Lumsden, M. D.; Decken, A. J. Am. Chem. Soc. 2007, 129, 7464–7474.
- (6) Riegel, S. D.; Burford, N.; Lumsden, M. D.; Decken, A. Chem. Commun. 2007, 4668–4670.
- (7) Godfrey, S. M.; Kelly, D. G.; McAuliffe, C. A.; Mackie, A. G.; Pritchard, R. G.; Watson, S. M. J. Chem. Soc., Chem. Commun. 1991, 1163–1164.

Scheme 1. Sequential Alkylation of Diphosphines and Cyclophosphines

Scheme 2. Halogenation of Tertiary Phosphines

the basicity of the anion $X^{-,11,12}$ and the solvent.¹³ As shown in Scheme 3, halogenation of diphosphines (1) gives halophosphines (10) via adduct 11 and ion pair [12][X], as the presence of the halide anion X^{-} anion leads to the cleavage of P–P bonds by an S_N2 reaction.¹⁴ Correspondingly, halogenation of *cyclic*phosphines 14 by reaction with dihalogens also results in P–P bond cleavage to give dihalophosphines 16 (Scheme 4), and

- (9) du Mont, W.-W.; Stenzel, V.; Jeske, J.; Jones, P. G.; Sebald, A.; Pohl, S.; Saak, W.; Bätcher, M. *Inorg. Chem.* **1994**, *33*, 1502–1505.
- (10) Stenzel, V.; Jeske, J.; du Mont, W.-W.; Jones, P. G. Inorg. Chem. **1997**, *36*, 443–448.
- (11) Pohl, S. Z. Anorg. Allg. Chem. 1983, 498, 15–19.
- (12) Pohl, S. Z. Anorg. Allg. Chem. 1983, 498, 20-24.
- (13) du Mont, W.-W.; Kroth, H.-J. J. Organomet. Chem. 1976, 113, C35– C37.

[†] Westfälische Wilhelms-University Münster.

^{*} Dalhousie University.

⁽⁸⁾ du Mont, W.-W.; Bätcher, M.; Pohl, S.; Saak, W. Angew. Chem., Int. Ed. Engl. 1987, 26, 912–913.

Scheme 3. Halogenation Reaction of Diphosphines via a Phosphinophosphonium Cation

Scheme 4. Halogenation Reaction of cyclo-Polyphosphines^a

Chart 1

the intermediate dihalodiphosphine **15** has been obtained from the reaction of Ph_5P_5 with 2.5 equiv of I_2 .¹⁵

Derivatives of the phosphino-halophosphonium cation $[12]^+$ have been previously isolated in conjunction with a weakly basic anion.^{1,16-20} In this context, the formation of phosphino-halophosphonium cations as intermediates in the halogenation reaction of polyphosphine has been exploited as a synthetic approach to catena-phosphinophosphonium cations by sequestering the product halide X⁻ into a complex anion. This is demonstrated by the reactions of tetracyclohexyl-cyclo-tetraphosphine $(CyP)_4$ with PhICl₂, PCl₅ or I₂, in the presence of Me₃SiOTf or GaX₃ (X = Cl, I), which provide quantitative formation of salts containing the first cyclo-2-halo-1,3,4-triphosphino-2-phosphonium cations [17]⁺ and $[19]^+$, and the first cyclo-2,4-dihalo-1,3-diphosphino-2,4diphosphonium dication $[20]^{2+}$ (Chart 1). The new cyclophosphino-halophosphonium cation $[20]^{2+}$ can be considered as a phosphine-phosphenium donor-acceptor complex and undergoes ligand exchange reactions with PMe₃ or 1,2bis(dimethylphosphino)ethane (dmpe) to effect dissociation

- (14) Fild, M.; Hollenberg, I.; Glemser, O. Naturwissenschaften 1967, 54, 89–90.
- (15) Hoffmann, H.; Grünwald, R. Chem. Ber. 1961, 94, 186–193. In this contribution, (PhP)₅ was misleadingly assigned as (PhP)₄.
- (16) Burford, N.; Cameron, T. S.; LeBlanc, D. J.; Losier, P.; Sereda, S.; Wu, G. Organometallics **1997**, *16*, 4712–4717.
- (17) Burford, N.; Ragogna, P. J. Dalton Trans. 2002, 4307-4315.
- (18) Burford, N.; Ragogna, P. J.; McDonald, R.; Ferguson, M. J. Am. Chem. Soc. **2003**, 125, 14404–14410.
- (19) Weigand, J. J.; Burford, N.; Lumsden, M. D.; Decken, A. Angew. Chem., Int. Ed. 2006, 45, 6733–6737.
- (20) Weigand, J. J.; Burford, N.; Decken, A. Eur. J. Inorg. Chem. 2008, 4343–4347.

of the homocyclic framework and forming phosphinodiphosphonium cations and diphosphinodiphosphonium dications.

Experimental Section

General Considerations. All reactions were carried out in a dry box under an inert N2 atmosphere. Dichloromethane and pentane were dried on an MBraun solvent purification system, degassed with three freeze-pump-thaw cycles, and stored under nitrogen and over molecular sieves prior to use. Acetonitrile (sure seal), phosphorus pentachloride, gallium(III) chloride, gallium(III) iodide, trimethylsilyl trifluoromethansulfonate (Me₃SiOTf), and 1,2-bis-(dimethylphosphino)ethane (dmpe) were purchased from Sigma-Aldrich. Dichloroiodobenzene (PhICl₂) and tetracyclohexyltetra-phosphinane ($\mathbf{2}$) were prepared according to literature procedures.^{21,22} All new compounds (unless otherwise stated) were characterized by ${}^{31}P{}^{1}H$, including measurement of ${}^{31}P$ (non-decoupled) and ³¹P-³¹P DQF COSY. Measurements were performed at 25 °C. Bruker AVANCE 500 (³¹P (202.46 MHz)) and chemical shifts are referenced to $\delta_{\text{H3PO4(85\%)}} = 0.00$ and are reported in ppm; J values are reported in Hz. For compounds that give rise to higher order spin-systems in their ³¹P{¹H} NMR spectra, the resolution-enhanced ${}^{31}P{}^{1}H{}$ spectra were transferred to the software program gNMR, version 5.0, by Cherwell Scientific.²³ After examining the line properties and noise, peak picking was performed. The full lineshape iteration procedure of gNMR was applied to obtain the best match of the fitted to the experimental spectra along with the assignment of all the peaks revealed in the resolution-enhanced spectra. The signs for the ${}^{1}J({}^{31}P,{}^{31}P)$ coupling constants were set negative and all other signs were obtained accordingly.^{24,25} Melting points were recorded on an electrochemical melting point apparatus in sealed capillary tubes under dinitrogen atmosphere and are uncorrected. Raman spectra were obtained for powdered and crystalline samples on a Bruker RFS 100 instrument equipped with a Nd:YAG laser (1064 nm). Chemical analyses were determined by Canadian Microanalytical Service LTD., Delta, BC, Canada.

Preparation of [17][GaI₄]·1/2 CH₂Cl₂. A solution of I₂ (5 mL, 0.05M, in CH₂Cl₂; 0.25 mmol) was added dropwise to a stirred solution of (CyP)₄ (114 mg, 0.25 mmol) and GaI₃ (113 mg, 0.25 mmol) in CH₂Cl₂ (8 mL). The reaction mixture was stirred at room temperature for 10 min, and the formation of the monocation was confirmed by ³¹P NMR spectroscopy. The solvent was partially removed in vacuo (~5 mL), and the solution was filtered and layered with pentane (5 mL) and stored at -32 °C. Pale-yellow crystals of [17][GaI₄] • 1/2 CH₂Cl₂ were obtained after 4 days. Data for [17][GaI₄] • 1/2 CH₂Cl₂: Yield: 42% (122 mg, 0.11 mmol); m.p. 118-120 °C; Raman (300 mW, 25 °C, cm⁻¹): 2968 (18), 2933 (100), 2889 (39), 2867 (40), 2846 (57), 1439 (24), 1343 (17), 1297 (18), 1266 (16), 1187 (16), 1103 (12), 1076 (12), 1025 (27), 997 (15), 848 (18), 814 (21), 737 (20), 506 (17), 479 (18), 465 (17), 427 (20), 398 (28), 363 (16), 328 (15), 267 (37), 214 (36), 189 (34), 167 (31), 145 (87), 123 (34); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, [ppm]): -44.2 (2P, **P**_A), -31.1 (1P, **P**_M), 34.8 (1P, **P**_X, A₂MX spin system, ${}^{1}J_{AM} = -260$, ${}^{1}J_{MX} = -140$, ${}^{2}J_{AX} = -8$ Hz). Chemical analyses proved to be problematic for [17][GaI₄] • 1/2 CH₂Cl₂ owing to the partial removal of solvents of crystallization upon isolation (Figure 1).

Reaction of 2 with PhICl₂ in the Presence of Me₃SiOTf. A solution of freshly prepared PhICl₂ [(i) 75 mg, 0.275 mmol, in 5 mL CH₂Cl₂; (ii) 137 mg, 0.5 mmol, in 5 mL CH₂Cl₂] was added

- (21) Krassowska-Świebocka, B.; Prokopenko, G.; Skulski, L. *Synlett* **1999**, *9*, 1409–1410.
- (22) Henderson, Wm. A.; Epstein, M., Jr.; Seichter, F. S. J. Am. Chem. Soc. 1963, 85, 2462–2466.
- (23) Budzelaar, P. H. M. gNMR for Windows, 5.0; Cherwell Scientific Publishing Limited: Oxford, UK, 1997.
- (24) Finer, E. G.; Harris, R. K. Prog. Nucl. Magn. Reson. Spectrosc. 1970, 6, 61–118.
- (25) Forgeron, M. A. M.; Gee, M.; Wasylishen, R. E. J. Phys. Chem. A 2004, 108, 4895–4908.

dropwise to a stirred solution of **2** (114 mg, 0.25 mmol) and Me₃SiOTf [(i) 45 μ L, 0.25 mmol; (ii) 90 μ L, 0.5 mmol] in CH₂Cl₂ (5 mL) at room temperature. The reaction was monitored by of ³¹P{¹H} NMR spectroscopy (Figure 2, i and ii).

Preparation of [23][GaCl₄]. A solution of GaCl₃ (88 mg, 0.5 mmol, in 8 mL CH₂Cl₂) was added dropwise to a stirred solution of PCl₅ (104 mg, 0.5 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred at room temperature for 10 min and stored at -32 °C. Clear, colorless needles of [**23**][GaCl₄] started to separate after 1 day. Data for [**23**][GaCl₄]: Yield: 95% (182 mg, 0.48 mmol); m.p. 308–310 °C; Raman (280 mW, 25 °C, cm⁻¹): 650 (16, ν_3 (F₂), PCl₄⁺), 455 (100, ν_1 (A₁), PCl₄⁺), 373 (2, ν_3 (F₂), GaCl₄⁻), 347 (61, ν_1 (A₁), GaCl₄⁻), 250 (74, ν_4 (F₂), PCl₄⁺), 178 (34, ν_2 (E), PCl₄⁺), 151 (35, ν_4 (F₂), GaCl₄⁻), 121 (39, ν_2 (E), GaCl₄⁻); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, [ppm]): $\delta = 85.1$ (s).

Reaction of 2 with PCl₅ in the Presence of GaCl₃. A solution of freshly prepared PCl₅ (104 mg, 0.5 mmol, in 4 mL CH₂Cl₂) was added dropwise to a stirred solution of **2** (114 mg, 0.25 mmol) and GaCl₃ (176 mg, 1.0 mmol) in CH₂Cl₂ (5 mL) at room temperature. The reaction was monitored by ³¹P{¹H} NMR spectroscopy (Figure 3).

Preparation of [19][GaCl₄] and [20][Ga₂Cl₇]₂. A solution of PCl₅ [(i) 52 mg, 0.25 mmol, in 5 mL CH₂Cl₂; (ii) 104 mg, 0.5 mmol, in 8 mL CH₂Cl₂] was added dropwise to a stirred solution of (CyP)₄ (114 mg, 0.25 mmol) and GaCl₃ [(i) 44 mg, 0.25 mmol; (ii) 176 mg, 1.0 mmol] in CH₂Cl₂ (8 mL). The reaction mixture was stirred at room temperature for 10 min, and the formation of (i) $[19]^+$ or (ii) $[20]^{2+}$ was confirmed by ³¹P-NMR spectroscopy. The solvent was partially removed in vacuo (~ 5 mL), and the solution was layered with pentane (5 mL) and stored at -32 °C. Colorless crystals of [19][GaCl₄] or [20][Ga₂Cl₇]₂ formed after a few days. Data for [19][GaCl₄]: Yield: 60% (106 mg, 0.15 mmol); m.p. 119-122 °C; Raman (300 mW, 25 °C, cm⁻¹): 2939 (100), 2890 (49), 2850 (80), 1495 (14), 1442 (32), 1344 (20), 1298 (19), 1267 (21), 1190 (16), 1080 (12), 1025 (26), 1000 (17), 849 (22), 816 (18), 734 (22), 572 (20), 461 (24), 423 (30), 367 (28), 344 (43), 291 (25), 166 (37), 150 (37), 121 (44); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, [ppm]): -54.4 (P, P_A), -40.7 (2P, P_M), 95.1 (1P, P_X, AM₂X spin system, ${}^{1}J_{AM} = -285$, ${}^{1}J_{MX} = -126$, ${}^{2}J_{AX} = 18$ Hz); elemental analysis for C₂₄H₄₄Cl₅GaP₄ (703.49): calcd C 41.0, H 6.3; found: C 41.3, H 6.4. Data for [20][Ga₂Cl₇]₂: Yield: 90% (293 mg, 0.23 mmol); m.p. 106-109 °C; Raman (300 mW, 25 °C, cm⁻¹): 2944 (100), 2900 (360), 2859 (50), 1442 (18), 1342 (13), 1299 (9), 1290 (10), 1266 (12), 1192 (13), 1176 (12), 1106 (5), 1080 (7), 1022 (20), 993 (14), 843 (15), 800 (7), 743 (8), 720 (11), 592 (14), 471 (8), 420 (20), 369 (68), 357 (18), 287 (17), 262 (10), 234 (10), 212 (12), 191 (19), 166 (26), 138 (54); ³¹P{¹H} NMR (CD₂Cl₂, 300 K, [ppm]): 9.3 (2P, P_A), 83.2 (2P, P_X , A_2X_2 spin system, ${}^1J_{AX} = -288$); elemental analysis for $C_{24}H_{44}Cl_{16}Ga_4P_4$ (1302.64): calcd C 22.1, H 3.4; found: C 22.1, H 3.6.

Preparation of [24][GaCl₄]. Method A: A solution of PCl₅ (104 mg, 0.50 mmol, in 8 mL CH₂Cl₂) was added dropwise to a stirred solution of [20][Ga₂Cl₇]₂ (130 mg, 0.10 mmol) in CH₂Cl₂ (4 mL). The reaction mixture was stirred at room temperature for 5 h. The solvent was partially removed in vacuo (~5 mL), the solution was layered with pentane (5 mL) and stored at -32 °C. Method B: To solution of 2 (91 mg, 0.20 mmol) and GaCl₃ (144 mg, 0.80 mmol) in CH₂Cl₂ (5 mL) was slowly added a solution PCl₅ (332 mg, 1.60 mmol) in CH₂Cl₂ (6 mL) at room temperature. The solvent was partially removed in vacuo (~5 mL), the solution was layered with pentane (5 mL) and stored at -32 °C. For both cases, colorless crystals of [24][GaCl₄] were formed within two days. Data for [24][GaCl₄]: Yield: 74% (160 mg, 0.37 mmol, method A); quantitative (method B); m.p. 96-98 °C; Raman (300 mW, 25 °C, cm⁻¹): 2959 (61), 2908 (25), 2872 (66), 2860 (65), 1515 (14), 1447 (48), 1351 (22), 1328 (17), 1296 (27), 1283 (20), 1268 (24), 1208 (17), 1179 (17), 1079 (17), 1027 (24), 1000 (21), 846 (22), 819 (27), 760 (24), 632 (29), 549 (52), 488 (55), 432 (41), 369 (31), 344 (100), 336 (83), 308 (44), 223 (54), 204 (61), 173 (37), 151

(55), 120 (84); ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂, 300 K, [ppm]): δ = 127.2 (s); elemental analysis for C₆H₁₁Cl₇GaP (432.02): calcd C 16.7, H 2.6; found: C 16.5, H 2.6.

Preparation of [27][GaCl₄]. To a cooled solution (0 °C) of PMe₃ (0.52 M in toluene, 1 mL, 0.52 mmol) in CH₂Cl₂ (5 mL) was added a solution of **[20]**[Ga₂Cl₇]₂ (169 mg, 0.13 mmol) in CH₂Cl₂ (2 mL) within 2 min. After 15 min the reaction mixture was allowed to warm to room temperature and stirred for a further 24 h. The oily phase was separated and dissolved in MeCN (1.5 mL). The MeCN solution was under-layered with CH₂Cl₂ and stored at -20 °C. After four days, **[27]**[GaCl₄]₂: Wield: 35% (73 mg); ³¹P{¹H} NMR (CD₃CN, 300 K, [ppm]): only one diastereomer observed, broad signals, $\delta = -33.1$ (AA') and 19.2 (XX'); elemental analysis for C₁₈H₄₀Cl₈Ga₂P₄ (803.48): calcd C 26.9, H 5.0; found: C 27.2, H 5.3.

Preparation of [29][GaCl₄]₂. A solution of dmpe (41.7 µL, 37.5 mg, 0.25 mmol) in CH₂Cl₂ (3 mL) was added dropwise within 30 min to a cooled (0 °C) solution of [20][Ga₂Cl₇]₂ (163 mg, 0.125 mmol) in CH₂Cl₂ (10 mL). After warming to room temperature, the formed precipitate was separated and washed with hexane (2 × 6 mL). The precipitate was dissolved in MeCN (3 mL), carefully under-layered with CH2Cl2 (5 mL), and stored at -20 °C. Colorless crystals of [29][GaCl₄]₂ were formed within three days. Data for [29][GaCl₄]₂: Yield: 85% (146 mg, 0.21 mmol); m.p. 146-148 °C; Raman (300 mW, 25 °C, cm⁻¹): 2990 (34), 2943 (48), 2924 (49), 2908 (100), 2859 (25), 1444 (20), 1395 (21), 1342 (16), 1300 (17), 1261 (18), 1192 (17), 1022 (18), 997 (17), 845 (19), 804 (20), 770 (21), 743 (22), 729 (23), 651 (33), 453 (34), 421 (33), 369 (-44), 348 (66), 320 (31), 247 (39), 218 (39), 179 (37), 149 (45), 120 (42); ${}^{31}P{}^{1}H$ NMR (CD₃CN, 300 K, [ppm]): -68.8 (1P, -P- P_A -P-), 50.0 (2P, $-P_X$ -P $-P_X$ -, AX₂ spin system, ${}^1J_{AX} = -293$); elemental analysis for C12H27Cl8Ga2P3 (687.33): calcd C 21.0, H 4.0; found: C 21.4, H 4.2.

Formation of a Mixture of [29][GaCl₄]₂ and [30][GaCl₄]₂. A solution of [20][Ga₂Cl₇]₂ (163 mg, 0.125 mmol) in CH₂Cl₂ (2 mL) was added all at once at room temperature to a solution of dmpe (41.7 μ L, 37.5 mg, 0.25 mmol) in CH₂Cl₂ (3 mL). The immediate formation of an oil was observed. The oily phase was separated and dissolved in MeCN (3 mL), and the formed precipitate (Cy₄P₄) separated. To the clear solution was added CH₂Cl₂ (5 mL) and an approximate 1:1 mixture (as shown by ³¹P{¹H} NMR) of compound [29][GaCl₄]₂ and [30][GaCl₄]₂ was obtained as a precipitate. Data for [29][GaCl₄]₂ and [30][GaCl₄]₂: Yield: 125 mg; ³¹P{¹H} NMR (CH₃CN, C₆D₆ Capillary, 300 K, [ppm]); [29][GaCl₄]₂: $\delta = -68.8$ (1P, -P-*P*_A-P-), 50.0 (2P, -*P*_X-P-*P*_X-, AX₂ spin system, ¹*J*_{AX} = -293); [30][GaCl₄]₂: $\delta = -55.9$ (2P, -P-*P*_A-P-), 18.8 (2P, -*P*_X-P-P-*P*_{X-}, AA'XX' spin system, ¹*J*_{AX} = -315, ²*J*_{AA'} = 151, ²*J*_{AX'} = 2^{*J*}*J*_{XA'} = 18, ³*J*_{XX'} = -9 Hz).

Crystal Structures. Suitable single crystals for all compounds were coated with Paratone-N oil, mounted using a glass fibre pin and frozen in the cold nitrogen stream of the goniometer. X-ray diffraction data for 2^{26} and $[29][GaCl_4]_2$ were collected on a Bruker AXS APEX CCD diffractometer equipped with a rotation anode at 153(2) K using graphite-monochromated Mo K_{α} radiation (λ = 0.71073 Å) with a scan width of 0.3° and 7 s for 2, and 5 s for [29][GaCl₄]₂ exposure times. In both cases generator settings were 50 kV and 180 mA. Diffraction data were collected over the full sphere and were corrected for absorption. The data reduction (SAINT)²⁷ and correction (SADABS)²⁸ was performed with the Bruker software. X-ray diffraction data for [17][GaI₄] · 1/2CH₂Cl₂, $[19][GaCl_4], [20][Ga_2Cl_7]_2, [23][GaCl_4], [24][GaCl_4],$ [27][GaCl₄]₂ were collected on a Rigaku RAXIS RAPID diffractometer with a imaging plate area detector (graphite-monochromated Mo K_{α} radiation, $\lambda = 0.71073$ Å). Crystals were mounted under fluorolube on the tip of 150 μ m micromounts. The data were

(28) Sheldrick, G. M. SADABS; Bruker AXS, Inc.: Madison, WI, 2004.

⁽²⁶⁾ Henderson, W. A.; Epstein, M.; Seichter, F. S. J. Am. Chem. Soc. 1963, 85, 2462–2466.

⁽²⁷⁾ SAINT 7.23A; Bruker AXS, Inc: Madison, WI, 2006.

Table 1. Crystallographic Data

	2	[17][Gal ₄] · 1/2 CH ₂ Cl ₂	[19][GaCl ₄]	[20][Ga ₂ Cl ₇] ₂
formula	$C_{24}H_{44}P_4$	C24.5H45ClP4GaI5	$C_{24}H_{44}Cl_5P_4Ga$	$C_{24}H_{44}Cl_{16}P_4Ga_4$
$M_{\rm r}$ [g mol ⁻¹]	456.47	1203.22	703.49	1302.63
dimension [mm ³]	0.16×0.13×0.13	0.27×0.19×0.16	0.29×0.27×0.21	$0.27 \times 0.14 \times 0.06$
color, habit	colorless block	yellow pinacoid	colorless block	colorless needle
crystal system	tetragonal	triclinic	monoclinic	orthorhombic
space group	$P\bar{4}2_1c$	$P\overline{1}$	$P2_1/n$	Pbca
a [Å]	10.1235(2)	10.5502(3)	18.491(9)	17.8070(4)
b [Å]	10.1235(2)	13.5437(5)	9.143(9)	17.9537(3)
c [Å]	12.4110(5)	13.9971(5)	19.970(5)	31.5222(8)
α [deg]	90	101.395(2)	90	90
β [deg]	90	93.704(1)	104.27(5)	90
γ [deg]	90	99.350(2)	90	90
V [Å ³]	1271.94(6)	1924.9(1)	3272(5)	10077.7(4)
Z	2	2	4	8
$T[\mathbf{K}]$	153(1)	123(2)	123(2)	123(2)
$\rho_c [\mathrm{g \ cm^{-3}}]$	1.192	2.076	1.428	1.717
F(000)	496	1130	1456	5152
$\lambda_{MOK\alpha}$ [Å]	0.71073	0.71073	0.71073	0.71073
$\mu \text{ [mm}^{-1}\text{]}$	0.306	4.976	1.458	3.109
absorption correction	multi-scan	multi-scan	none	multi-scan
reflections collected	13577	96666	79803	86025
reflections unique	981	11152	6680	36726
$R_{\rm int}$	0.0251	0.026	0.115	0.031
reflection obs. $[F > 3\sigma(F)]$	955	9830	5249	21819
residual density [e Å ⁻³]	0.249, -0.123	2.33, -1.74	1.12, -0.66	1.42, -0.79
parameters	65	472	352	477
GOF	1.112	1.077	1.000	0.970
$R_1 \left[I > 2\sigma(I) \right]$	0.0213	0.0258	0.0590	0.0478
wR_2 (all data)	0.0583	0.0305	0.0589	0.0593
CCDC	745539	745543	745537	745538
	[23][GaCl ₄]	[24][GaCl ₄]	[27][GaCl ₄] ₂	[29][GaCl ₄] ₂
formula	Cl ₈ GaP	C ₆ H ₁₁ Cl ₁₇ GaP	$C_{18}H_{40}Cl_8Ga_2P_4$	$C_{12}H_{27}Cl_8Ga_2P_3$
formula $M_{\rm r} [{\rm g \ mol}^{-1}]$	Cl ₈ GaP 384.32	C ₆ H ₁₁ Cl ₁₇ GaP 432.02	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29 \end{array}$
formula M _r [g mol ⁻¹] dimension [mm ³]	Cl ₈ GaP 384.32 0.38×0.19×0.17	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\!\times\!.25\!\times\!0.22 \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3 \\ 687.29 \\ 0.14{\times}.11{\times}0.09 \end{array}$
formula M _r [g mol ⁻¹] dimension [mm ³] color, habit	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle	C ₆ H ₁₁ Cl ₁₇ GaP 432.02 0.25×0.12×0.08 colorless needle	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3 \\ 687.29 \\ 0.14 \times .11 \times 0.09 \\ \text{colorless block} \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ \text{colorless needle}\\ \text{monoclinic} \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless \ block\\ orthorhombic \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm	$C_{6}H_{11}Cl_{17}GaP$ 432.02 0.25×0.12×0.08 colorless needle monoclinic $P2_{1}/c$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å]	Cl_8GaP 384.32 $0.38 \times 0.19 \times 0.17$ colorless needle orthorhombic <i>P</i> bcm 6.1146(3)	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2)	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3) \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å]	Cl ₈ GaP 384.32 $0.38 \times 0.19 \times 0.17$ colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1)	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3)	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5) \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1)	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic P2 ₁ /c 9.740(2) 12.396(3) 28.660(7)	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6) \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] α [deg]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic P2 ₁ /c 9.740(2) 12.396(3) 28.660(7) 90	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] α [deg] β [deg]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 0\end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] α [deg] β [deg] γ [deg] γ [deg]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 24.07(2) \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] α [deg] β [deg] γ [deg] V [Å ³]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 90 1139.7(1)	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ \end{array}$
formula $M_r [g \text{ mol}^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] $\alpha [deg]$ $\beta [deg]$ $\gamma [deg]$ $V [Å^3]$ Z	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P_{21}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 122(2) \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.90381(6)\\ 90\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 152(1)\end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] $\alpha [deg]$ $\beta [deg]$ $\gamma [deg]$ $V [Å^3]$ Z T [K]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4 123(2) 22(2)	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P_{21}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 123(2) \\ 1.920 \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P_{21/c}$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4 123(2) 1.512	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] $\beta [deg]$ $\gamma [deg]$ $V [Å^3]$ Z T [K] $\rho_c [g cm^{-3}]$	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4 123(2) 2.240 720	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 123(2) \\ 1.829 \\ 1.66 \\ \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4 123(2) 1.542	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1260\end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] β [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000)	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 90 1139.7(1) 4 123(2) 2.240 728	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 123(2) \\ 1.829 \\ 1696 \\ 0.51072 \\ \end{array}$	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4 123(2) 1.542 1624 0.542 1624	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71072\\ 0.0000\\ 0.000\\ 0.000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.000\\$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] α [deg] β [deg] γ [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) λ_{MoKa} [Å] -1	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4 123(2) 2.240 728 0.71073 4.251	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 123(2) \\ 1.829 \\ 1696 \\ 0.71073 \\ 2.015 \end{array}$	C ₁₈ H ₄₀ Cl ₈ Ga ₂ P ₄ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4 123(2) 1.542 1624 0.71073 2.369	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.025\end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] α [deg] β [deg] γ [deg] γ [deg] γ [deg] γ [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) $\lambda_{MoK\alpha}$ [Å] μ [mm ⁻¹]	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4 123(2) 2.240 728 0.71073 4.361 	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 123(2) \\ 1.829 \\ 1696 \\ 0.71073 \\ 3.015 \\ \dots \\ multiply and an $	$C_{18}H_{40}Cl_8Ga_2P_4$ 803.47 0.26×.25×0.22 colorless needle monoclinic $P2_1/c$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4 123(2) 1.542 1624 0.71073 2.368 medicente	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ context of particular (1000) \\ 10000000000000000000000000000000$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] α [deg] β [deg] γ [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) $\lambda_{MoK\alpha}$ [Å] μ [mm ⁻¹] absorption correction	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4 123(2) 2.240 728 0.71073 4.361 multi-scan 8002	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP \\ 432.02 \\ 0.25 \times 0.12 \times 0.08 \\ colorless needle \\ monoclinic \\ P2_{1}/c \\ 8.783(2) \\ 13.740(3) \\ 26.02(1) \\ 90 \\ 91.96(2) \\ 90 \\ 3137(2) \\ 4 \\ 123(2) \\ 1.829 \\ 1696 \\ 0.71073 \\ 3.015 \\ multi-scan \\ 17765 \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] α [deg] β [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) $\lambda_{MoK\alpha}$ [Å] μ [mm ⁻¹] absorption correction reflections collected	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 1139.7(1) 4 123(2) 2.240 728 0.71073 4.361 multi-scan 8903 1656	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7000\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9034(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 2810\\ \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] β [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) λ_{MoKa} [Å] μ [mm ⁻¹] absorption correction reflections collected reflections unique B	$\begin{array}{c} Cl_8GaP\\ 384.32\\ 0.38\times0.19\times0.17\\ colorless needle\\ orthorhombic\\ Pbcm\\ 6.1146(3)\\ 13.514(1)\\ 13.792(1)\\ 90\\ 90\\ 90\\ 90\\ 1139.7(1)\\ 4\\ 123(2)\\ 2.240\\ 728\\ 0.71073\\ 4.361\\ multi-scan\\ 8903\\ 1656\\ 0.020\\ \end{array}$	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9034(6)\\ 90\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0238\\ \end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] $\gamma [deg]$ $\gamma [deg]$ $\gamma [deg]$ $V [Å^3]$ Z T [K] $\rho_c [g cm^{-3}]$ F(000) $\lambda_{MoK\alpha} [Å]$ $\mu [mm^{-1}]$ absorption correction reflections collected reflections unique R_{int}	$\begin{array}{c} Cl_8GaP\\ 384.32\\ 0.38\times0.19\times0.17\\ colorless needle\\ orthorhombic\\ Pbcm\\ 6.1146(3)\\ 13.514(1)\\ 13.792(1)\\ 90\\ 90\\ 90\\ 90\\ 1139.7(1)\\ 4\\ 123(2)\\ 2.240\\ 728\\ 0.71073\\ 4.361\\ multi-scan\\ 8903\\ 1656\\ 0.030\\ 1307\\ \end{array}$	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P_{21}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ 6752\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.90381(6)\\ 90\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0328\\ 2512\\ \end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] $\alpha [deg]$ $\beta [deg]$ $\gamma [deg]$ $\gamma [Å^3]$ Z T [K] $\rho_c [g cm^{-3}]$ F(000) $\lambda_{MoK\alpha} [Å]$ $\mu [mm^{-1}]$ absorption correction reflections collected reflection obs. $[F > 3\sigma(F)]$ residual density $[\alpha, \delta^{-3}]$	Cl ₈ GaP 384.32 0.38×0.19×0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 90 90 1139.7(1) 4 123(2) 2.240 728 0.71073 4.361 multi-scan 8903 1656 0.030 1397 0.72 = 0.07	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P_{21}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ 1.22=0.78\\ \end{array}$	C ₁₈ H ₄₀ Cl ₈ Ga ₂ P ₄ 803.47 0.26×.25×0.22 colorless needle monoclinic $P_{2_1/c}$ 9.740(2) 12.396(3) 28.660(7) 90 90.19(1) 90 3460.6(2) 4 123(2) 1.542 1624 0.71073 2.368 multi-scan 48724 7909 0.101 6752 1.75 - 1.20	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.981(6)\\ 90\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0328\\ 3512\\ 0.634\\ -0.532\\ \end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] $\beta [deg]$ $\gamma [deg]$ $V [Å^3]$ Z T [K] $\rho_c [g cm^{-3}]$ F(000) $\lambda_{MoK\alpha} [Å]$ $\mu [mm^{-1}]$ absorption correction reflections collected reflection obs. $[F > 3\sigma(F)]$ residual density $[e Å^{-3}]$	Cl ₈ GaP 384.32 0.38 \times 0.19 \times 0.17 colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 90 90 90 90 90 90 90	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ 1.22, -0.78\\ 204 \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P_{21/c}\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ 6752\\ 1.75, -1.29\\ 290\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9811(6)\\ 90\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0328\\ 3512\\ 0.634, -0.533\\ 231\\ \end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] $\beta [deg]$ $\gamma [deg]$ $V [Å^3]$ Z T [K] $\rho_c [g cm^{-3}]$ F(000) $\lambda_{MoK\alpha} [Å]$ $\mu [mm^{-1}]$ absorption correction reflections collected reflection obs. $[F > 3\sigma(F)]$ residual density [e Å ⁻³] parameters GOE	$\begin{array}{c} Cl_8GaP\\ 384.32\\ 0.38\times0.19\times0.17\\ colorless needle\\ orthorhombic\\ Pbcm\\ 6.1146(3)\\ 13.514(1)\\ 13.792(1)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 1139.7(1)\\ 4\\ 123(2)\\ 2.240\\ 728\\ 0.71073\\ 4.361\\ multi-scan\\ 8903\\ 1656\\ 0.030\\ 1397\\ 0.72, -0.97\\ 52\\ 1.008\\ \end{array}$	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ 1.22, -0.78\\ 294\\ 1.114\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P_{21/c}\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ 6752\\ 1.75, -1.29\\ 290\\ 1.089\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9034(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0328\\ 3512\\ 0.634, -0.533\\ 231\\ 1.026\\ \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] c [Å] α [deg] β [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) $\lambda_{MoK\alpha}$ [Å] μ [mm ⁻¹] absorption correction reflections collected reflections unique R_{int} reflection obs. [$F > 3\sigma(F)$] residual density [e Å ⁻³] parameters GOF R_c [$L > 3\sigma(D)$]	$\begin{array}{c} Cl_8GaP\\ 384.32\\ 0.38\times0.19\times0.17\\ colorless needle\\ orthorhombic\\ Pbcm\\ 6.1146(3)\\ 13.514(1)\\ 13.792(1)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 1139.7(1)\\ 4\\ 123(2)\\ 2.240\\ 728\\ 0.71073\\ 4.361\\ multi-scan\\ 8903\\ 1656\\ 0.030\\ 1397\\ 0.72, -0.97\\ 52\\ 1.098\\ 0.0338\\ \end{array}$	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ 1.22, -0.78\\ 294\\ 1.114\\ 0.0386\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P_{21/c}\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ 6752\\ 1.75, -1.29\\ 290\\ 1.089\\ 0.0662\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9881(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0328\\ 3512\\ 0.634, -0.533\\ 231\\ 1.026\\ 0.0259\\ \end{array}$
formula M_r [g mol ⁻¹] dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] β [deg] γ [deg] γ [deg] γ [deg] V [Å ³] Z T [K] ρ_c [g cm ⁻³] F(000) $\lambda_{MoK\alpha}$ [Å] μ [mm ⁻¹] absorption correction reflections collected reflections unique R_{int} reflection obs. [$F > 3\sigma(F)$] residual density [e Å ⁻³] parameters GOF R_1 [$I > 3\sigma(I)$] wR_2 (all data)	Cl ₈ GaP 384.32 $0.38 \times 0.19 \times 0.17$ colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 90 90 90 90 90 90 90	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25\times0.12\times0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ 1.22, -0.78\\ 294\\ 1.114\\ 0.0386\\ 0.0427\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ 6752\\ 1.75, -1.29\\ 290\\ 1.089\\ 0.0662\\ 0.1876\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034(5)\\ 14.9034(5)\\ 14.981(6)\\ 90\\ 90\\ 90\\ 2727.1(2)\\ 4\\ 153(1)\\ 1.674\\ 1368\\ 0.71073\\ 2.935\\ multi-scan\\ 12814\\ 3810\\ 0.0328\\ 3512\\ 0.634, -0.533\\ 231\\ 1.026\\ 0.0259\\ 0.0579\\ \end{array}$
formula $M_r [g mol^{-1}]$ dimension [mm ³] color, habit crystal system space group a [Å] b [Å] c [Å] a [deg] $\beta [deg]$ $\gamma [deg]$ $\gamma [deg]$ $\gamma [deg]$ $\gamma [deg]$ $\gamma [Å^3]$ Z T [K] $\rho_c [g cm^{-3}]$ F(000) $\lambda_{MoK\alpha} [Å]$ $\mu [mm^{-1}]$ absorption correction reflections collected reflections unique R_{int} reflection obs. $[F > 3\sigma(F)]$ residual density [e Å ⁻³] parameters GOF $R_1 [I > 3\sigma(I)]$ wR_2 (all data) CCDC	Cl ₈ GaP 384.32 $0.38 \times 0.19 \times 0.17$ colorless needle orthorhombic <i>P</i> bcm 6.1146(3) 13.514(1) 13.792(1) 90 90 90 90 90 1139.7(1) 4 123(2) 2.240 728 0.71073 4.361 multi-scan 8903 1656 0.030 1397 0.72, -0.97 52 1.098 0.0338 0.0376 745544	$\begin{array}{c} C_{6}H_{11}Cl_{17}GaP\\ 432.02\\ 0.25 \times 0.12 \times 0.08\\ colorless needle\\ monoclinic\\ P2_{1}/c\\ 8.783(2)\\ 13.740(3)\\ 26.02(1)\\ 90\\ 91.96(2)\\ 90\\ 91.96(2)\\ 90\\ 3137(2)\\ 4\\ 123(2)\\ 1.829\\ 1696\\ 0.71073\\ 3.015\\ multi-scan\\ 17765\\ 7802\\ 0.040\\ 6005\\ 1.22, -0.78\\ 294\\ 1.114\\ 0.0386\\ 0.0427\\ 745541\\ \end{array}$	$\begin{array}{c} C_{18}H_{40}Cl_8Ga_2P_4\\ 803.47\\ 0.26\times.25\times0.22\\ colorless needle\\ monoclinic\\ P2_1/c\\ 9.740(2)\\ 12.396(3)\\ 28.660(7)\\ 90\\ 90.19(1)\\ 90\\ 3460.6(2)\\ 4\\ 123(2)\\ 1.542\\ 1624\\ 0.71073\\ 2.368\\ multi-scan\\ 48724\\ 7909\\ 0.101\\ 6752\\ 1.75, -1.29\\ 290\\ 1.089\\ 0.0662\\ 0.1876\\ 745540\\ \end{array}$	$\begin{array}{c} C_{12}H_{27}Cl_8Ga_2P_3\\ 687.29\\ 0.14\times.11\times0.09\\ colorless block\\ orthorhombic\\ Pca2_1\\ 12.2913(3)\\ 14.9034(5)\\ 14.9034($

collected using sweeps of ω oscillations. After data reduction, equivalent reflections were merged. Intensity data were corrected for Lorentz, absorption and polarization effects. For further crystal and data collection details, see Table 1. The structures were solved by direct methods and expanded Fourier techniques. Full matrix least-squares refinement was carried out with the program

SHELXS97²⁹ against F^2 using first isotropic and later anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were generated with idealized geometries and isotropically refined

(29) Sheldrick, G. M. SHELXL-97, Program for crystal structure determination; University of Göttingen: Germany, 1997.

^a (i) I₂, GaI₃, or AgOTf in CH₂Cl₂; (ii) 2I₂, 2GaI₃, or 2AgOTf in CH₂Cl₂.

Table 2. $^{31}P\{^{1}H\}$ NMR Parameters for Salts of Cations [17]+, [19]+, [20]^{2+}, [27]^{2+}, [29]^{2+}, and [30]^{2+}

	[17] ⁺	[19] ⁺	$[20]^{2+}$	$[27]^{2+}$	[29] ²⁺	[30] ²⁺
spin system ^{<i>a,b</i>}	A ₂ MX	AM ₂ X	A_2X_2	AA'XX'	AX_2	AA'XX'
$\delta_{A}{}^{c}$	-44.2	-54.4	9.3	-33.1	-68.8	-55.9
δ_{M}	-31.1	-40.7				
$\delta_{\rm X}$	34.8	95.1	83.2	19.2	50.0	18.8
${}^{1}J_{\mathrm{AM}}{}^{d}$	-260	-285				
$^{1}J_{\mathrm{MX}}$	-140	-126				
$^{2}J_{AX}$	-8	18				
${}^{1}J_{AX}, {}^{1}J_{AA'}$			-288	_e	-293	-315, -151
${}^{2}J_{A'X}, {}^{3}J_{XX'}$				_ ^e		18, -9

^{*a*} Furthest downfield resonance is denoted by the highest letter in the alphabet, and the furthest upfield by the lowest letter. By convention the letter in the spin system is determined by the ratio $\Delta\delta(P_iP_{ii})/J_{P_iP_i} > 10$ (resonance considered to be pseudo-first order and the assigned letters are separated) < 10 (consecutive letters are assigned). ^{*b*} Parameters for spin systems of higher order are derived by iterative fitting of experimental data at 300 K. ^{*c*} Absolute signs of the ${}^{1}J_{PP(iso)}$ have been tentatively assigned to be negative. ^{*d*} Chemical shifts (δ) are given in [ppm] and coupling constants (*J*) in [Hz]. ^{*e*} Could not be simulated due to broad signals.

using a riding model. For [27][GaCl₄]₂ the crystal was a twin (twin law 1 0 0, 0 – 1 0, 0 0 – 1) with not quite equal components (0.509: 0.491). For compounds [17][GaI₄]·1/2CH₂Cl₂, [19][GaCl₄], [20][Ga₂Cl₇]₂, [23][GaCl₄], [24][GaCl₄], and [27][GaCl₄]₂ the calculations were performed using the CrystalStructure crystal-lographic software package.^{30,31}

Results and Discussion

The halonium addition reaction that occurs when a phosphine reacts with a dihalogen has been extrapolated to polyphosphines to provide a new synthetic approach to phosphinophosphonium cations. The ³¹P{¹H} NMR spectra of reaction mixtures containing (CyP)₄ (**2**), I₂ and GaI₃ in CH₂Cl₂ solution (Scheme 5) show three resonances in a first order A₂MX spin pattern with relative intensities of 2:1:1. The data are summarized in Table 2 and are consistent with the formation of the monocation [**17**]⁺ (Chart 1). Chemical shifts at higher field correspond to the phosphine centers ($\delta_A = -44.2$ and $\delta_M = -31.1$ ppm) and the low field shift ($\delta_A = 34.8$ ppm) corresponds to the phosphonium center, in accordance with those for previously reported phosphinophosphonium cations.^{1,17,32} Compound [**17**][GaI₄] was isolated as extremely air- and moisture-sensitive yellow blocks in moderate yields (42 %) as a CH₂Cl₂ solvate.

The solid state structure of [17]GaI₄·1/2 CH₂Cl₂ has been determined by X-ray crystallography and a view of the cation and anion in the solid state is shown in Figure 1. Selected

Figure 1. ORTEP plot of the molecular structure of the cation and anion in [17][GaCl₄]•1/2CH₂Cl₂. Thermal ellipsoids with 50% probability (hydrogen atoms and solvent molecules are omitted for clarity). Selected bond lengths (Å) and angles (°) are included in Table 2.

Table 3. Selected Structural Parameters for 2 and Cations $[17]^+, \, [19]^+, \, \text{and} \, [20]^{2+}$

	2	$[17]^+ (X = I)$	$[19]^+ (X = CI)$	$[20]^{2+}$ (X = Cl)				
Bond Lengths [Å]								
$P1-P2^a$	2.2224(5)	2.1872(8)	2.185(1)	2.1999(8)				
P2-P3		2.2386(7)	2.2411(8)	2.2004(8)				
P3-P4		2.2400(7)	2.2478(9)	2.2077(8)				
$P4-P1^{a}$	2.2224(5)	2.1919(8)	2.1857(8)	2.2084(8)				
P1-X		2.4041(5)	2.011(1)	1.9828(9)				
P3-X				1.9832(8)				
P1-C1	1.868(1)	1.838(2)	1.814(2)	1.820(2)				
P2-C7		1.864(2)	1.864(2)	1.865(2)				
P3-C13		1.872(2)	1.873(2)	1.791(2)				
P4-C19		1.863(2)	1.863(2)	1.867(2)				
	Вс	ond Angles [de	g]					
P1-P2-P3 ^a	85.271(9)	84.03(2)	83.71(3)	80.55(2)				
P2-P3-P4		86.97(2)	88.71(3)	94.60(3)				
P3-P4-P1		83.89(2)	83.52(3)	80.21(2)				
P4-P1-P2		89.46(3)	91.79(3)	94.59(3)				
P2-P1-C1	102.55(5)	113.29(7)	115.3(1)	110.83(8)				
P4-P1-C1		115.26(7)	115.32(8)	114.21(8)				
P1-P2-C7	102.81(5)	105.78(7)	103.97(9)	105.15(8)				
P1-P4-C19		104.73(8)	105.51(8)	106.27(9)				
P2-P3-C13		100.70(7)	98.37(8)	111.47(8)				
P4-P3-C13		100.86(7)	100.35(9)	112.68(8)				
P2-P1-X		113.79(2)	113.74(4)	113.34(3)				
P4-P1-X		114.57(2)	113.46(3)	112.41(3)				
P2-P3-X				113.96(3)				
P4-P3-X				112.91(3)				
C1-P1-X		113.79(2)	107.44(9)	110.64(9)				
C13-P3-X			. /	110.45(9)				

^{*a*} For **2** P1 = P3, P2 = Pⁱ, P4 = Pⁱⁱ, symmetry code: (i) y - 1, -x + 1, -z + 2; (ii) -y + 1, x + 1, -z + 2.

structural parameters are listed in Table 3 along with comparative parameters for the *cyclo*-tetraphosphine **2**. Consistent with the structural features of $[MeCy_4P_4]^+$,⁴ the cyclohexyl substituent at P1 in $[17]^+$ minimizes the steric interactions by twisting to enable a *gauche* conformation of the α -hydrogen atom of C1 and the iodine substituent.⁴ The P–P bonds at the four-

⁽³⁰⁾ CrystalStructure 3.8: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC (2000–2006). 9009 New Trails Dr. The Woodlands TX 77381 USA.

⁽³¹⁾ CRYSTALS, Issue 11; Carruthers, J. R., Rollett, J. S., Betteridge, P. W., Kinna, D., Pearce, L., Larsen, A., Gabe, E., Eds.; Chemical Crystallography Laboratory, Oxford, UK, 1999.

⁽³²⁾ Burford, N.; Ragogna, Cameron, T. S.; Ragogna, P. J. Am. Chem. Soc. 2001, 123, 7947–7948.

Figure 2. ${}^{31}P{}^{1}H$ NMR spectra of the reaction of $(CyP)_4$ with PhICl₂ in the presence of Me₃SiOTf at RT in CH₂Cl₂; (i) ~1.1 equiv of PhICl₂; (ii) 2 equiv of PhICl₂.

coordinate phosphorus centers are slightly shorter than those involving the three-coordinate phosphorus centers. Moreover, the shortest P-C bond occurs at the phosphonium center. The P_4 ring is slightly more puckered than that in $[MeCy_4P_4]^+$, as indicated by greater P-P-P-P torsion angles ranging from $23.6-24.2^{\circ}$ (vs. $28.9-29.6^{\circ}$). The iodine atom at the phosphonium center has a weak interaction with an iodine of the gallate anion (3.635(3) Å), resulting in an almost linear P1–I1–I3 unit (168.37(2)°). The P-I bond length (2.4041(5) Å) is typical (2.40 \pm 0.01 Å),^{11,12,33} indicating that [17]GaI₄ should be considered as an ionic compound. Attempts to prepare the dication $[18]^{2+}$, by treatment of 2 with 2 equiv of I_2 and GaI_3 or AgOTf, leads to the formation of copious amounts of an orange precipitate, found to be completely insoluble in CH₂Cl₂, CH₃CN, and C₆H₅F (Scheme 5). We abstained from a detailed investigation of the precipitate.

³¹P{¹H} NMR spectra of reaction mixtures containing (CyP)₄ (2), PhICl₂ and Me₃SiOTf in CH_2Cl_2 are summarized in Figure 2. Reaction mixtures involving an slight excess (1.1 equiv) of PhICl₂ exhibit an AM₂X spin system that is assigned to $[19]^+$ (Table 2). The presence of $(CyP)_4$ ($\delta = -67.0$ ppm)³⁴ and CyPCl₂ (21, $\delta = -192.0$ ppm)³⁵ in this reaction mixture is significant as the ³¹P{¹H} NMR spectrum of a reaction of 2 with 2 equiv of PhICl₂ in the presence of 2 equiv of Me₃SiOTf (Figure 2(ii)) shows only the presence of $[19]^+$ and CyPCl₂ (21). We interpret these observations according to Scheme 6, which shows the initial chloronium addition to 2 to give $[19]^+$ followed by a second addition to give the dication $[20]^{2+}$. The dication is not observed implying fast nucleophilic attacks by Cl⁻ at the phosphonium centers to first displace cation $[22]^+$ and 21. Under these reaction conditions, we speculate that cation $[22]^+$ undergoes a further and rapid³⁶ nucleophilic attack by Cl⁻ to

- (35) Weferling, N. Z. Anorg. Allg. Chem. 1987, 548, 55-62.
- (36) Schoeller, W. W.; Staemmler, V.; Rademacher, P.; Niecke, E. Inorg. Chem. 1986, 25, 4382–4385.

(AM V agin avata

Scheme 6. Proposed Pathway for Reaction of 2 with PhICl_2 in the Presence of $\mathsf{Me}_3\mathsf{SiOTf}$

give **21** and [CyP=PCy],³⁷ which dimerizes to give **2**. The characteristic A₂B pattern corresponding to $(CyP)_3^{38}$ was not observed in the chlorination reactions in contrast to the ring contraction of $[MeCy_4P_4]^+$, which is observed on reaction with PMe₃ to yield $(CyP)_3$ and the phosphinophosphonium cation $[Me_3P-PMeCy]^{+,4}$

Chloronium addition to $(CyP)_4$ is also effected by reaction with PCl₅ and GaCl₃ in CH₂Cl₂. Reaction mixtures of various stoichiometries have been monitored by ³¹P{¹H} NMR spectroscopy at room temperature as summarized in Figure 3. In the absence of PCl₅ (Figure 3, X = 0 equiv), the two broad signals ($\delta = -43$ and -62 ppm) are indicative of a weak adduct between (CyP)₄ and GaCl₃ which dissociates in solution. Introduction of a solution of PCl₅ in CH₂Cl₂ results in the formation of the tetrachlorophosphonium salt [**23**][GaCl₄], as shown in Scheme 7a, which reacts with (CyP)₄ to give [**19**]⁺ (AM₂X spin system, Table 2) and PCl₃ ($\delta = -220.1$ ppm; X

⁽³³⁾ Cotton, F. A.; Kibala, P. A. J. Am. Chem. Soc. 1987, 109, 3308– 3312.

⁽³⁴⁾ Albrand, J. P.; Cogne, A.; Robert, J. B. J. Am. Chem. Soc. 1978, 100, 2600–2604.

⁽³⁷⁾ Diphosphenes (RP=PR) need bulky substituents for kinetic stabilization:Yoshifuji, M.; Shima, I.; Inamoto, K.; Hirotsu, K.; Higushi, T. J. Am. Chem. Soc. 1981, 103, 4587–4589.

⁽³⁸⁾ Baudler, M.; Pinner, C.; Gruner, C.; Hellmann, J.; Schwamborn, M.; Kloth, B. Z. Naturforsch. B 1977, 32, 1244–1251.

Figure 3. ${}^{31}P{}^{1}H$ NMR spectra (CH₂Cl₂, C₆D₆ capillary, RT) of the stepwise chlorination reaction of **2** with PCl₅ in the presence of GaCl₃ according to Scheme 7; X = 0-3 equiv of PCl₅.

Scheme 7. Successive Chlorination of $(CyP)_4$ with $[PCl_4]^+$

= 1 equiv).³⁹ A high concentration of PCl_5 and $GaCl_3$ in solution leads to the crystallisation of [**23**][GaCl₄] as colorless needles.

The binary tetrachlorophosphonium cation $[23]^+$ has been known for some time and was characterized by vibrational⁴⁰ and ³¹P NMR⁴¹ spectroscopic studies, as well as by crystal structure determinations with a large combination of several counter-anions.⁴² However, to the best of our knowledge, an X-ray determination of $[23]^+$ as the tetrachlorogallate salt has not been reported. Compound $[23][GaCl_4]$ crystallizes in the orthorhombic space group *P*bca with four molecular units in the unit cell (Figure 4). The structure is isotypical with $[PCl_4][FeCl_4].^{43}$ The cation displays an almost perfect tetrahedral

Figure 4. ORTEP plot of the perspective view of the unit cell of [23][GaCl₄] perpendicular to the *bc* plane. Thermal ellipsoids with 50% probability at 123(2) K [symmetry code: (i) x, 0.5 – y, -z; (ii) x, y, 0.5 – z].

geometry, whereas the anion is significantly distorted, exhibiting Cl-E-Cl angles between 108.69(2) and 113.47(2)° ([GaCl₄]⁻) and between 108.43(5) and 110.38(3)° ([PCl₄]⁺). This trend is

Figure 5. ORTEP plot of the molecular structure of [19][GaCl₄]. Thermal ellipsoids with 50% probability at 123(2) K (hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (deg) are included in Table 2.

also reflected by the Ga–Cl distances varying from 2.1704(7) to 2.1867(9)Å, whereas the P–Cl bond lengths are within the limits and are almost identical (1.9285(8) and 1.9302(9) Å). The molecular structure of [**23**][GaCl₄] shows short interatomic Cl···Cl distances in the range of 3.338(2) to 3.470(2) Å between the [PCl₄]⁺ and [GaCl₄]⁻ units, which are shorter than the sum of the van der Waals radii (3.50 Å),⁴⁴ indicating weak cation···anion interactions.

Two triplets, assigned to $[20]^{2+}$, are observed when the stoichiometry of PCl_4^+ exceeds that of $(CyP)_4$ (Table 2; Scheme 7b, Figure 3, X = 2 equiv). The cations $[19]^+$ and $[20]^{2+}$ are resilient in this reaction mixture due to the absence of chloride anion. Addition of excess PCl₅ leads to appearance of two singlets attributed to $[23]^{+41}$ ($\delta = 85.1$ ppm) and $[24]^+$ ($\delta =$ 127.2 ppm). Cation $[24]^+$ represents the final chlorination product of **2** when 8 equiv of PCl_5 are added (Scheme 7c). Equimolar reaction mixtures of (CyP)4, GaCl3, and PCl3 in CH2Cl2 at room temperature have enabled isolation of [19][GaCl₄]. Similarly, [20][Ga₂Cl₇]₂ has been isolated from the 1:4:2 reaction of (CvP)₄, GaCl₃, and PCl₃ in CH₂Cl₂ (Scheme 7b). Both compounds were obtained as colorless needles. A view of the molecular units of [19][GaCl₄] and [20][Ga₂Cl₇]₂ is shown in Figures 5 and 6, respectively, and structural parameters are listed in Table 3.

The structural features of [19][GaCl₄] are comparable with those discussed for [17]GaI₄ · 1/2 CH₂Cl₂. The solid state structure of [20][Ga₂Cl₇]₂ contains a symmetric (approximate $C_{2\nu}$) cation [20]²⁺ consistent with the A₂X₂ spin system observed in the solution ³¹P{¹H} NMR spectrum. The P–P bond lengths in [20]²⁺ are essentially identical [2.1999(8) to 2.2084(8) Å]

- (39) Johnson, S. E.; Knobler, C. B. *Phosphorus, Sulfur and Silicon* **1996**, *115*, 227–240.
- (40) (a) Shamir, J.; van der Veken, B. J.; Herman, M. A.; Rafaeloff, R. J. Raman Spectrosc. 1981, 11, 215–220. (b) Finch, A.; Gates, P. N.; Muir, A. S. Polyhedron 1986, 5, 1537–1542.
- (41) Dillon, K. B.; Nisbet, M. P.; Waddington, T. C. J. Chem. Soc., Dalton Trans. 1978, 11, 1455–1460.
- (42) Aubauer, C.; Kaupp, M.; Klapötke, T. M.; Nöth, H.; Piotrowski, H.; Schnick, W.; Senker, J.; Suter, M. J. Chem. Soc., Dalton Trans. 2001, 1880–1889, and references therein.
- (43) Kistenmacher, T. J.; Stucky, G. D. Inorg. Chem. 1968, 10, 2150– 2155.
- (44) Bondi, A. J. Phys. Chem. 1964, 68, 441-451.

Figure 6. ORTEP plot of the molecular structure of [**20**][GaCl₄]. Thermal ellipsoids with 50% probability at 123(2) K (hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (deg) are included in Table 2.

and are only slightly shorter than those in $(CyP)_4$ [2.2224(5) Å] and in [**19**]⁺ [2.1872(8) to 2.2478(9) Å]. The P–Cl bonds [1.9828(9) and 1.9832(8) Å] in [**20**]²⁺ are shorter than that in [**19**]⁺ [2.011(1) Å] as expected due to the higher charge in the

Figure 7. ORTEP plot of [24][GaCl₄]₂. Thermal ellipsoids with 50% probability (hydrogen atoms and counteranions are omitted for clarity) Only one cation of the asymmetric unit and the interaction of the counteranion is shown. Selected bond lengths (Å) and angles (deg): P2–Cl12 1.954(1), P2–Cl13 1.953(1), P2–Cl14 1.954(1), P2–C7 1.792(2), Ga1–Cl1 2.1834(7), Ga1–C2 2.1932(8), Ga1–Cl3 2.1753(8), Ga1–Cl4 2.1578(8), Cl12–P2–Cl13 108.36(4), Cl12–P2–Cl14 107.94(5), Cl12–P2–C7 110.57(9), Cl13–P2–Cl14 107.66(4), Cl13–P2–C7 110.7(1), Cl14–P2–C7 111.52(9).

Scheme 8. Formation of acyclic-2,3-Diphosphino-1,4-diphosphonium Dication $[\mathbf{27}]^{2+}$ via Displacement Reaction of $[\mathbf{20}]^{2+}$ with PMe_3 and Proposed Mechanism

dication. The P–C bond lengths at the phosphonium centers in $[19]^+$ and $[20]^{2+}$ [1.791(2) to 1.820(2) Å] are significantly shorter than those at the phosphine centers [1.863(2) to 1.873(2) Å]. The [GaCl₄]⁻ anions in [19][GaCl₄] adopt a slightly distorted tetrahedral geometry with Cl–Ga–Cl bond angles between 107.36(3) and 111.94(4)°. The anion in [20][Ga₂Cl₇]₂, which is isosteric with Cl₂O₇,⁴⁵ contains two distorted tetrahedral gallium centers associated via a chloride bridge with a mean Ga–Cl–Ga bond angle of 110.88(4)°. The *gauche* conformation of the [Ga₂Cl₇]⁻ anion can be explained by the minimization of Cl–Cl interactions.⁴⁶ The molecular structures of [19][GaCl₄] and [20][Ga₂Cl₇]₂ show no interion Cl···Cl interactions.

In the presence of excess PCl₅ and GaCl₃ in CH₂Cl₂, (CyP)₄ dissociates to give [**24**][GaCl₄] quantitatively (Scheme 7c), which crystallizes with two independent, but essentially identical formula units of [**24**][Ga₂Cl₇]₂ in the unit cell. A view of one of the molecular units is depicted in Figure 7. The mean P–Cl bond lengths (1.954 Å) in the cations are slightly shorter than those in the monocation [**19**]⁺ (2.011(1) Å) and the dication [**20**]²⁺ (1.983(1) Å) due to the inductive effect of the chloro substituents in [**24**]⁺. The Cl–P–Cl and Cl–P–C angles range from 107.86(4) to 111.60(9)° consistent with the tetrahedral arrangement of the cation. The Cl····Cl contact (3.281(2) Å)

(46) Meyer, G.; Blachnik, R. Anorg. Allg. Chem. 1983, 503, 126-132.

Figure 8. ORTEP plot of the molecular structure of the cation $[27]^{2+}$ in [27][GaCl₄]₂. Thermal ellipsoids with 50% probability (hydrogen atoms and counteranions are omitted for clarity). Selected bond lengths (Å), angles (deg) and dihedral angles: P1–P2 2.186(2), P2–P3 2.227(2), P3–P4 2.198(2), P2–C7 1.874(6), P2–C7 1.879(5); P1–P2–P3 94.98(8), P2–P3–P4 95.10(8), P1–P2–C7 107.6(2), P3–P2–C7 107.9(2), P2–P3–C13 107.1(2), P4–P3–C13 107.3(2), Cl12–P2–C7 110.57(9), Cl13–P2–C114 107.66(4), Cl13–P2–C7 110.7(1), Cl14–P2–C7 111.52(9); P1–P2–P3–P4 132.13(8), C7–P2–P3–C13 –7.6(2), C7–P2–P3–P4–117.5(2), Cl3–P3–P2–P1–118.0(2).

between Cl13 of $[24]^+$ and Cl2 of $[GaCl_4]^-$ is within the sum of the van der Waals radii ($r_{Cl} = 1.75$ Å, $2r_{Cl} = 3.50$ Å),⁴⁴ classifying this as a weak donor–acceptor interaction.

The ³¹P{¹H} NMR spectra of the slow addition of 1 equiv [20] [Ga₂Cl₇]₂ to 4 equiv of PMe₃ show mainly two broad signals $(\delta_A = -33.1, \delta_X = 19.2 \text{ ppm}; \text{ Table 2})$ due to fluxional behavior that in accordance to other observation are assigned to the 2,3diphosphino-1,4-diphosphonium dication $[27]^{2+}$ (Scheme 8). As shown in Scheme 8, nucleophilic attack of dication $[20]^{2+}$ by PMe₃ is proposed to give the five-membered monocation I, which is subsequently attacked by a second equivalent PMe₃ to yield monocation II.⁴⁷ The ³¹P{¹H} NMR spectrum of a test reaction obtained from the slow addition of 2 equiv PMe₃ to dication [27]²⁺ is complicated, however, an AMX spin system with resonances at -40.5 (1P_A, dd, ${}^{1}J_{AM} = 293$, ${}^{1}J_{AX} = 312$ Hz), 17.3 (1P_M, dd, ${}^{1}J_{AM} = 293$, ${}^{2}J_{MX} = 47$ Hz), and 95.7 (1P_X, dd, ${}^{1}J_{AX} = 312$, ${}^{2}J_{MX} = 47$ Hz) ppm indicates the formation of cation $[Me_3P_MP_ACyP_XCyCl]^+$ (II) as an intermediate. We envisage that cation II subsequently undergoes conversion to dication $[20]^{2+}$ with addition of PMe₃. Colorless crystals of [27][GaCl₄]₂ were obtained in low yield (35%), but spectroscopic characterization was hampered by dynamic behavior in solution. The solid state structure of the cation $[27]^{2+}$ (Figure 8) is consistent with those of other derivatives^{48,49,47} prepared by reductive coupling of chlorophosphinophosphonium ions $[12]^+$ (Scheme 9), and the eclipsed conformation of the central C-P-P-C framework [torsion angle of $7.7(3)^{\circ}$] is due to a combination of steric interactions in the terminal and internal positions.47

The reaction of [20][Ga₂Cl₇]₂ with PMe₃ can be considered as a ligand-induced cyclodissociation, highlighting $[27]^{2+}$ as a

⁽⁴⁵⁾ Simon, A.; Borrmann, H. Angew. Chem., Int. Ed. 1981, 27, 1339-1341.

⁽⁴⁷⁾ Carpenter, Y.-Y.; Dyker, C. A.; Burford, N.; Lumsden, M. D.; Decken, A. J. Am. Chem. Soc. 2008, 130, 15732–15741.

⁽⁴⁸⁾ Karaghiosoff, K. Ph.D. Thesis, Ludwig-Maximilians-Universität: Munich, Germany, 1986.

⁽⁴⁹⁾ Dyker, C. A.; Burford, N.; Lumsden, M. D.; Decken, A. J. Am. Chem. Soc. 2006, 128, 9632–9633.

Scheme 9. Formation of *acyclic*-2,3-Diphosphino-1,4-diphosphonium Dications [**25**]²⁺ via Reductive Coupling Reactions of a Chlorophosphoniumphosphine ([**12**]⁺) with Phosphines⁴⁷

Scheme 10. Formation of cyclic-2,3-Diphosphino-1,4-diphosphonium Dications $[\mathbf{28}]^{2+}$ via Reductive Coupling Reaction According to Dillon and Co-workers^{50}

Scheme 11. Formation of *cyclic*-2-Phosphino-1,3-diphosphonium $[29]^{2+}$ and 2,3-Diphosphino-1,4-diphosphonium Dications $[30]^{2+}$ via Displacement Reaction of $[20]^{2+}$ with dmpe and Suggested Reaction Mechanism^a

conc. [20]2+ > dmpe

^{*a*} (i) slow addition of dmpe, CH_2Cl_2 , 0 °C, (ii) fast addition of [**20**][Ga₂Cl₇]₂ to dmpe, CH_2Cl_2 , RT.

ligand-stablized diphosphenium dication. In this context, Dillon and co-workers reported the reductive cycloaddition reaction of dichlorophosphines with a bidentate diphosphine to form *cyclo*-2,3-diphosphino-1,4-diphosphonium dications $[28]^{2+}$ with an organic backbone (Scheme 10).⁵⁰ By analogy, when a solution of $[20][Ga_2Cl_7]_2$ in CH₂Cl₂ is added rapidly to a CH₂Cl₂ solution containing 2 equiv of dmpe, a oily phase is formed which has been characterized as an equimolar mixture of the new salts $[29][GaCl_4]_2$ and $[30][GaCl_4]_2$ and 2, as illustrated in Scheme 11. The oil dissolves in acetonitrile accompanied by precipitation of 2. The clear solution exhibits the ³¹P{¹H} NMR spectrum depicted in Figure 9, displaying AX₂ and AA'XX'

Figure 9. ³¹P{¹H} NMR spectra (CH₃CN, C₆D₆ capillary, RT) of the redissolved precipitate of the reaction mixture of [**20**][Ga₂Cl₇]₂ with dmpe according to Scheme 11 (a,ii). Signals assigned to unknown side-products are labeled with asterisks. Expansions (inset) show the experimental (up) and fitted²³ (down) spectra for cation [**20**]²⁺.

spin systems assigned to cations $[29]^{2+}$ and $[30]^{2+}$, respectively (Table 2). Compound [30][GaCl₄]₂ could not be isolated, but the ³¹P{¹H} NMR spectrum has been successfully simulated as an AA'XX' spin system in accordance to other *cyclo*-2,3-diphosphino-1,4-diphosphonium dications⁵⁰ (Figure 9).

The reaction of dmpe with dication $[20]^{2+}$ to form cations $[29]^{2+}$ and $[30]^{2+}$ can be interpreted according to the proposed mechanisms in Scheme 11. The initial step for both cases is the ring-opening of $[20]^{2+}$ by nucleophilic attack of dmpe to form dication III. The subsequent reaction can now proceed in one of two ways. The dication III is not observed implying either fast intermolecular nucleophilic attack by a second dmpe molecule (conc. $[20]^{2+}$ < dmpe) to form cation VII or by an intramolecular attack (conc. $[20]^{2+} > dmpe$) to form cation $[29]^{2+}$ and triphosphine IV. Intramolecular ring-closure of cation VII results in the formation of dication [30]²⁺. Triphosphines of type IV are known to be highly reactive and we speculate that the reaction of a second equivalent of dmpe leads to the formation of cation V. Subsequent intramolecular attack according to Scheme 11 results in the formation of the second equivalent of [29]²⁺ and [CyP=PCy],³⁷ which dimerizes to give 2. Attempts to identify the intermediates III-VII in various stoichiometric combinations of dication $[20]^{2+}$ and dmpe and under various reaction conditions were unsuccessful. However, when 2 equiv of dmpe are added slowly to a cooled (0 °C) solution of [20][Ga₂Cl₇]₂ in CH₂Cl₂, the ³¹P{¹H} NMR spectrum of the reaction mixture reveals the stoichiometric formation of only [29][GaCl₄]₂ and 2 (Scheme 11). The salt was isolated in high yield (85 %) as air- and moisture-sensitive colorless blocks. The solid state structure of $[29]^{2+}$, shown in Figure 10, exhibits structural features that are consistent with those of derivatives previously prepared by the alkylation⁵¹ of *cyclic* triphosphenium ions to form triphosphonium salts.^{52,53} The formation of the mixture of cations $[29]^{2+}$ and $[30]^{2+}$ might be explained by these two competitive reactions, however, dication $[29]^{2+}$ is the thermodynamically favored product. The formation of the kinetically favored dication $[30]^{2+}$ results from the local

⁽⁵⁰⁾ Boyall, A. J.; Dillon, K. B.; Howard, J. A. K.; Monks, P. K.; Thompson, A. L. Dalton Trans. 2007, 1374–1376.

⁽⁵¹⁾ Dillon, K. B.; Goeta, A. E.; Howard, J. A. K.; Monks, P. K.; Shepherd, H. J.; Thompson, A. L. *Dalton Trans.* **2008**, 1144–1149.

Figure 10. ORTEP plot of the molecular structure of the cation $[29]^{2+}$ in [29][GaCl₄]₂. Thermal ellipsoids with 50% probability (hydrogen atoms and counteranions are omitted for clarity). Selected bond lengths (Å) and angles (deg): P1-P2 2.191(1), P1-P3 2.214(1), P1-C1 1.873(3), P2-C7 1.806(3), P2-C9 1.792(4), P2-C10 1.795(4), P3-C8 1.815(3), P3-C11 1.787(3), P3-C12 1.783(4), C7-C8 1.535(5), P2-P1-P3 90.18(4), P2-P1-C1 104.4(1), P3-P1-C1 108.1(1), C9-P2-C10 110.6(8), C9-P2-C7 110.1(2), P1-P2-C10 116.4(1), P1-P2-C7 100.2(1), C11-P3-C12 108.6(2), C8-P3-C11 110.3(2), P1-P3-C12 117.3(1), P1-P3-C11 107.2(1), P1-P3-C8 104.4(1).

overconcentration of dmpe, since the dication $[20]^{2+}$ was slowly added to the dmpe solution.

Conclusion

Reactions of tetracyclohexyl-*cyclo*-tetraphosphine (CyP)₄ with a source of halonium cations in the presence of GaX₃ (X = Cl, I) allows for the isolation of first *cyclo*-2-halo-1,3,4-triphosphino-2-phosphonium cations and *cyclo*-2,4-dihalo-1,3-diphosphino-2,4-diphosphonium dications as their corresponding met-

(52) Schmidpeter, A.; Lochschmidt, S.; Karaghiosoff, K.; Sheldrick, W. S. J. Chem. Soc., Chem. Commun. 1985, 1447–1448. **Scheme 12.** Formal Retro [2 + 2] or [1 + 1 + 1' + 1'] Reaction Channels for the Degradation of Dication $[20]^{2+}$

allates. Isolation of the new cations is made possible by the presence of GaX₃, which engages the halide anion and inhibits the P–P bond cleavage. In contrast to the analogous dications $[28]^{2+}$ reported by Dillon and co-workers, the formation of $[30]^{2+}$ represents a new approach for the generation of ligand-stabilized diphosphenium dications. Dication $[20]^{2+}$ reacts with Me₃P or dmpe and dissociates formally via a retro [2 + 2] or [1 + 1 + 1' + 1'] process (Scheme 12) releasing $[RP]^{2+}$ and $[R_2P_2]^{2+}$ fragments.

Acknowledgment. We gratefully acknowledge the Alexander von Humboldt-Foundation (Feodor Lynen Return Fellowship for J.J.W.), the FCI (Liebig scholarship for J.J.W.), the International Research Training Group (IRTG 1444, funding for R.J.D.), the European Phosphorus Science Network (PhoSciNet CM0802), the Natural Sciences and Engineering Research Council of Canada, the Killam Foundation and the Canada Research Chairs Program for funding. We thank Prof. David Emsley (McMaster University) for valuable discussion. J.J.W. thanks Prof. F. Ekkehardt Hahn (WWU Münster) for his generous support and advice.

Supporting Information Available: Crystallographic information. This material is available free of charge via the Internet at http://pubs.acs.org.

JA907693F

⁽⁵³⁾ Ellis, B. D.; Macdonald, C. L. B. *Coord. Chem. Rev.* **2007**, *251*, 936–973, and references therein.